Wave Transmision on Interlocking Concrete Block Submerged Breakwater

I Ketut Dharma Setiawan


When a large dimension of rock needed for an armored layer of breakwater, the scarcity of it became a major adversity, because of that many research subject of using concrete as a substitute for rock performed. One of the research are the usage of concrete block for submerged breakwater as a method for avoiding a very large concrete block, but still able to withstood wave forces. The key is in the interlocking of each concrete block so it could achieve the desired result with a lesser dimension concrete block. The research was performed in Laboratory of Coastal Experimental Station, Water Resource Research Center, using a 2D channel. The facility used were flume channel, regular wave generator machine, wave dumper, wave probe, and computer for processing data. The experiment indicate that the wave energy attenuation depends on the dimension of interlocking concrete block type submerged breakwater. The dimension represented in the form of relation of the distance of water level to structures crest and the crests width. The performance of the structure evaluated by observing its transmission coefficient. The largest transmission coefficient obtained is 0,97 and the smallest is 0,43.


Physical Model; Submerged breakwater; Transmission coefficient


Abrori, IZ., Armono, H. D, Zikra, M., 2009. “Pengaruh Freeboard Terumbu Karang Buatan Bentuk Silinder Berongga Sebagai Breakwater Terbenam Dalam Mereduksi Gelombang” ISBN 978-979-18342-1-6 Seminar Nasional Aplikasi Teknologi Prasarana Wilayah.

Armono, HD. dan Hall, K.R., 2003, Wave Transmission on submerged Breakwater Made of Hollow Hemispherical Shape Artificial reef, 1st Coastal Estuary and Offshore Engineering Specialty Conference of the Canadian Society for Civil Engineering (4 – 7 Juni 2003), Moncton – Canada.

Buccino, M. dan Calabrese, M., 2007, Conceptual Approach for Prediction of Wave Transmission at Low-crested Breakwater, Journal of waterway, port, coastal, and ocean engineering , ASCE.

CERC. 1984. Shore Protection Manual. US Army Coastal Engineering Research Center. Washington (SPM, 1984).

Friebel, H. C. dan Harris, L. E., 1999, Re-evaluation of Wave Transmission Coeffcient Formulae from Submerged Breakwater Physical Model, Florida.

Hamdani, Triatmodjo, B., Suharyanyo., 2015 Wave Transmission on Submerged Breakwater with Interlocking D-Block Armor. International Refereed Journal of Engineering and Science (IRJES) Volume 4, Issue 6 (June 2015), PP.35-44

Hughes, S.A., 1993., Physical Models and Laboratory Techniques in Coastal Engineering, Coastal Engineering Research Center, USA.

Ranasinghe, R dan Turner, I.L. 2006, Shoreline Response to Submerged Structures: A review Coastal Engineering 53 65-79

Putra, AOP Armono, HD. dan Sujantoko., 2013. Pengaruh Elevasi Muka Air Laut pada Koefisien Transmisi dan Refleksi Composite Breakwater, Jurnal Teknik Pomits Vol. 2, No. 1, ISSN: 2337-3539.

Sila Dharma, I.G.B. 1994, “Unjuk Kerja Terumbu Karang Buatan (Artificial Reef) sebagai Peredam Energi Gelombang” (tesis). Yogyakarta: Universitas Gadjah Mada.

Triatmodjo, B. 1999, Teknik Pantai, Beta Offset, Yogyakarta.

Triatmodjo, B. 2003. Hidraulika II. Beta Offset. Yogyakarta.

Yuliastuti, D.I, Hashim AM, 2011 Wave Transmission on Submerged Rubble Mound Breakwater Using L-Blocks. 2nd International Conference on Environmental Science and Technology IPCBEE vol.6 (2011) © (2011) IACSIT Press, Singapore

Yuwono, N. 1992. Dasar Dasar Perencanaan Bangunan Pantai, Vol 2. Laboratorium Hidraulika dan hidrologi. PAU-IT-UGM.

Yogyakarta Yuwono, N. 1992. Teknik Pantai, Vol I. Laboratorium Hidraulika dan hidrologi. PAU-IT-UGM. Yogyakarta.

DOI: https://doi.org/10.32679/jth.v8i2.332


  • There are currently no refbacks.


Indexed by:
   Sinta Science and Technology IndexCrossref logo 
Direktorat Bina Teknik Sumber Daya Air, Direktorat Jenderal Sumber Daya Air, Kementerian Pekerjaan Umum dan Perumahan Rakyat