Wave Reflection on Interlocking Concrete Block Submerged Breakwater

I Ketut Dharma Setiawan, Juventus Welly Radianta Ginting

Abstract


When a large dimension of rock needed for an armored layer of breakwater, the scarcity of it became a major adversity, because of that many research subject of using concrete as a substitute for rock performed. One of the research are the usage of concrete block for submerged breakwater as a method for avoiding a very large concrete block, but still able to withstood wave forces. The key is in the interlocking of each concrete block so it could achieve the desired result with a lesser dimension concrete block. The research was performed in Laboratory of Coastal Experimental Station, Water Resource Research Center, using a 2D channel. The facility used were flume channel, regular wave generator machine, wave dumper, wave probe, and computer for processing data. The experiment indicate that the wave energy attenuation depends on the dimension of interlocking concrete block type submerged breakwater. The dimension represented in the form of relation of the distance of water level to structures crest and the crests width. The breakwater performance of the concrete block is quite useful as an underwater coastal protection building viewed from reflection with a reflection coefficient of 34.7% at (h?d) / h = 0 and the peak width of B = 2.0

Keywords


Physical model submerged breakwater; reflection coefficient

References


Abrori, I. Z., Armono, H. D., & Zikra, M. 2009. Pengaruh Freeboard Terumbu Karang Buatan Bentuk Silinder Berongga Sebagai Breakwater Terbenam Dalam Mereduksi Gelombang. Seminar Nasional Aplikasi Teknologi Prasarana Wilayah, 1-6. doi:ISBN 978-979-18342

Baguelin, F., Jezequel, F. J., Lemee, E., & Le, M. A. 1972. Expansion de sondes cylindriques dans le sols coherents. Bulletin de liaison des labortoires des ponts er chaussees (LPC) no 61, 189-202.

Balai Pantai. 2015. Fasilitas laboratorium uji model Fisik. Dalam B. Pantai, Profil laboratorium Pantai (hal. 12-15). Buleleng, Bali: Pusat Litbang Sumber Daya Air.

CERC, U. A. 1984. Shore protection manual. Washington: US Army Corps of Engineers.

Dalrymple, R. A. 1985. Physical Modelling in Coastal Engineering. Physical Modelling in Coastal Engineering.

Dharma, I. S. 1994. Unjuk Kerja Terumbu Karang Buatan (Artificial Reef) sebagai Peredam Energi Gelombang. Yogyakarta: tesis - Universitas Gadjah Mada.

Hughes, S. A. 1993. Physical Models and Laboratory Techniques in Coastal Engineering, Volume 7 of Advanced series on ocean engineering. Singapore: World Scientific, 1993.

Kamphuis, J. W. 1991. Incipient Wave Breaking. Coastal Engineering 15 (3): 185–203. doi:10.1016/0378-3839(91)90002-X.

Kinong, Ketut. 2006. Transmisi Gelombang Dan Stabilitas Armor Pada Breakwater Tenggelam Disertasi.

Ranasinghe, R., & Turnrer, I. L. 2006. Shoreline Response to Submerged Structures. A review Coastal Engineering 53, 65-79.

Takahashi, S. 2002. Design of vertical breakwaters. Delft: PARI (Port and Airport Research Institute).

Triatmodjo, B. 1999. Teknik Pantai. Yogyakarta: Penerbit Beta Offset.

Yuwono, N. 1992. Dasar Dasar Perencanaan Bangunan Pantai. Yogyakarta: Keluarga Mahasiswa Teknik Sipil Universitas Gadjah Mada.




DOI: https://doi.org/10.32679/jth.v9i1.335

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 JURNAL TEKNIK HIDRAULIK

Indexed by:
   Sinta Science and Technology IndexCrossref logo 
 
       
 
 
 
Sekretariat:
 
Pusat Litbang Sumber Daya Air, Badan Penelitian dan Pengembangan, Kementerian Pekerjaan Umum dan Perumahan Rakyat