Potential of Tidal Lowland For Irrigation Development in Merauke Regency Using Hydrodynamic Modelling 1D2D

Yudi Lasmana, Parlinggoman Simanungkalit, Muhammad Gifariyono, Ganggaya Sotyadarpita, L. Budi Triadi

Abstract


Merauke Regency has three major rivers i.e Bian River, Kumbe River and Maro River (BIKUMA), the three rivers have large horizontal tidal potential. To know the potential of tides in the development of lowland irrigation in Merauke Regency needs to be studied. This study is supported by hydrometry and hydraulic surveys which has been conducted during the dry season during at spring tide and neap tide simultaneously for all three rivers. The survey included measuring river geometry activities with a range of 5 Km, river hydrometry measurements (observation of water fluctuations with proportional distances for model calibration and upstream river velocity for discharge). Limitations of river upstream measurements are limited by the distance where the Bian River along 125 Km, the River Kumbe along 171 km, and the Maro River along 66 km from the estuary. Then, performed a Sobek 1D hydrodynamic modeling that describes the movement of water from upstream into downstream. From the results of modeling is known that the water entering from the sea to the Bikuma River is greater than the water out to sea. The potential for tides is 1.7 Billion m3. Furthermore, the simulation of Sobek 1D2D to obtain the extent of natural condition, the area that can be inundated is 123.609 ha. Utilization of tidal potential can be channeled to the development zone through an integrated lowland irrigation water management system so that water utilization can be optimal.

Keywords


Hydrodynamic model; tidal; lowland; irrigation; Bian river; Kumbe river; Maro river; Merauke Regency; SOBEK

References


Aldrighetti, E. 2007. Computational hydraulic techniques for the Saint Venant equations in arbitrarily shaped geometry, (May), 125.

Alihamsyah, T. 2004. Potensi dan Pendayagunaan Lahan Rawa untuk Peningkatan Produksi Padi. Bogor, Jawa Barat, Indonesia.

Badan Pusat Statistik Kabupaten Merauke. 2016. Kabupaten Merauke Dalam Angka 2016. Merauke: BPS Kabupaten Merauke.

Balai Litbang Rawa. 2016. Laporan Akhir Pengembangan Lahan Irigasi Rawa di Papua. Pusat Litbang SDA. Balitbang Kementerian Pekerjaan Umum dan Perumahan Rakyat

Balai Wilayah Sungai Papua, 2015, Presentasi Potensi Papua, Dirjen Sumber Daya Air, Kementerian Pekerjaan Umum dan Perumahan Rakyat

Ballesteros, J. A., Bodoque, J. M., Dez-Herrero, A., Sanchez-Silva, M., & Stoffel, M. 2011. Calibration of floodplain roughness and estimation of flood discharge based on tree-ring evidence and hydraulic modelling. Journal of Hydrology, 403(12), 103115. https://doi.org/10.1016/j.jhydrol.2011.03.045

Brunner, G. W. 2008. Calibration of Unsteady Flow Models, 10(May), 142.

Chatterjee, C., Frster, S., & Bronstert, A. 2008. Comparison of hydrodynamic models of different complexities to model floods with emergency storage areas. Hydrological Processes, 22(24), 46954709. https://doi.org/10.1002/hyp.7079

Daniel L. Mendelsohn, Steven Peene, Eduardo Yassuda, S. D. 1999. A Hydrodynamic Model Calibration Study of the Savannah River Estuary with an Examination of Factors Affecting Salinity Intrusion Daniel. Proceedings of 6th International Conference on Estuarine and Coastal Modeling., 663--685.

Dias, J. M., & Lopes, J. F. 2006. Implementation and assessment of hydrodynamic, salt and heat transport models: The case of Ria de Aveiro Lagoon (Portugal). Environmental Modelling and Software, 21(1), 115. https://doi.org/10.1016/j.envsoft.2004.09.002

DPMA. 1982. BTA 60. Laporan Survei Hidrometri Sungai Maro Irian Jaya. Direktorat Penyelidikan Masalah Air. Departemen Pekerjaan Umum.

Direktorat Jendral Sumber Daya Air, 2010, Standar Perencanaan Irigasi, Kriteria Perencanaan, Kementerian Pekerjaan Umum

Haile, A. T., & Tamiru Haile, A. 2005. Integarting Hydrodynamic Models and High Resolution DEM (LiDAR) For Flood Modelling. Itc, 53(9), 16891699. https://doi.org/10.1017/CBO9781107415324.004

Ho, W., & Minh, C. 2011. Tutorial SOBEK-Rural.

Ji, Z., Vriend, H. de, & Hu, C. 2003. Application of Sobek Model in the Yellow. International Conference on Estuares and Coasts, 909915.

Lapan. 2016. Laporan Akhir Penyusunan Informasi Spasial Berbasis Data Satelit Penginderaan Jauh (Penutup Lahan, Digital Terrain Model Dan Lahan Gambut)

Las, Irsal, Et Al. 2007. "Water Availibility For Agriculture Sector: Challenges And Resolution Strategy." Badan Litbang Pertanian. Kementrian Pertanian.

Lasmana, Yudi, 2012, Evaluasi Kinerja Polder Pluit Skenario Banjir 2007, Tesis MPSDA Institut Teknologi Bandung

Lasmana, Yudi, 2003,Laporan praktikum analisis pasang surut, ITB.

Matte, P., Secretan, Y., & Morin, J. 2017. Hydrodynamic Modeling of the St . Lawrence Fluvial Estuary . I : Model Setup , Calibration , and Validation, 143(5), 115. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000397.

Mirfenderesk, H., & Tomlinson, R. 2007. Numerical Modelling of Tidal Dynamic and Water Circulation at the Gold Coast Broadwater, Australia. Journal of Coastal Research, (February), 277281.

Moftakhari, H. R., Jay, D. A., Talke, S. A., Kukulka, T., & Bromirski, P. D. 2013. A novel approach to flow estimation in tidal rivers. Water Resources Research, 49(8), 48174832. https://doi.org/10.1002/wrcr.20363

Ruji, E. M. 2007. Floodplain inundation simulation using 2d hydrodynamic modelling approach. Simulation.

Samuel, 2012, Penentuan Chart Datum Pada Sungai Yang Dipengaruhi Pasang Surut (Studi Kasus: Teluk Sangkulirang, Kalimantan Timur)), Itb Https://Digilib.Itb.Ac.Id/Gdl.Php?Mod=Browse&Op=Read&Id=Jbptitbpp-Gdl-Samuelnim1-22733

Toffolon, M. 2002. Hydrodynamics and Morphodynamics of Tidal Channels. Dip. Ingegneria Civile E Ambientale, Ph. D.(JANUARY 2003), 173.

Triadi L. B., 2013. Pengendalian Drainase Jaringan Tata Air Sungai Sunter-Item-Sentiong Dki Jakarta, Prosiding Pertemuan Ilmiah Tahunan HATHI XXX, Jakarta

Tuoi, V. T. N. 2008. One Dimensional Saint-Venant System, (June), 46.

Werner, M. G. F. 2004. A comparison of flood extent modelling approaches through constraining uncertainties on gauge data. Hydrology and Earth System Sciences, 8, 11411152. https://doi.org/10.5194/hess-8-1141-2004




DOI: https://doi.org/10.32679/jth.v9i1.432

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Yudi Lasmana, Parlinggoman Simanungkalit, Muhammad Gifariyono, Ganggaya Sotyadarpita, L. Budi Triadi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indexed by:
     
 
 
 
Sekretariat:
 
Direktorat Bina Teknik Sumber Daya Air, Direktorat Jenderal Sumber Daya Air, Kementerian Pekerjaan Umum dan Perumahan Rakyat
 
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.