Global Transpiration Fraction Derived From Water Isotopologue Datasets

Samuel Jonson Sutanto

Abstract


Transpirasi sebagai salah satu komponen dari evapo-transpirasi memberikan kontribusi aliran masa yang besar dari permukaan tanah. Banyak metode telah di aplikasikan untuk menghitung besarnya komponen-komponen evapotranspirasi ini. Sebagian besar kajian dilakukan pada skala lokal maupun regional dan hanya ada sedikit kajian yang menghitung besarnya transpirasi secara global. Transpirasi global yang dihitung baik dengan model maupun dengan teknik isotop menghasilkan nilai transpirasi yang rendah untuk model dan tinggi untuk teknik isotop dibandingkan dengan pengukuran. Hal ini mengindikasikan bahwa berapa nilai yang akurat dari transpirasi global masih merupakan tantangan. Oleh karena itu, kajian ini bertujuan untuk menghitung besarnya transpirasi global dan penguapan dari tanah dengan menggunakan teknik isotop yang datanya diambil dari hasil model GCM yang dilengkapi dengan modul isotop. Hasil perhitungan dengan teknik isotop nampak menjanjikan dengan nilai fraksi transpirasi sebesar 80% pada daerah yang ditumbuhi tanaman, and lebih rendah dari 50% pada daerah gurun. Fraksi transpirasi global dari hasil perhitungan adalah sebesar 69% dengan 43% air hujan yang jatuh menguap kembali ke atmosfer melalui transpirasi tanaman. Meskipun metode keseimbangan masa isotop dapat diaplikasikan ke TES satelit data, fraksi transpirasi yang dihasilkan masih menunjukkan adanya masalah pada resolusi data yang dihasilkan. Dengan adanya peningkatan resolusi satelit pada masa yang akan datang, perhitungan komponen-komponen evapo-transpirasi dengan menggunakan data isotop akan lebih akurat

Keywords


Transpirasi, isotop, model GCM, keterbatasan metoda, prospek

Full Text:

PDF

References


Baldocchi, D., and Coauthors. 2001. FLUXNET: A new tool to

study the temporal and spatial variability of

ecosystem-scale carbon dioxide, water vapor,

and energy flux densities, Bull. Amer. Meteor.

Soc., 82, 24152433.

Bulcock, H. H., and Jewitt, G. P. W. 2010. Spatial mapping of

leaf area index using hyperspectral remote

sensing for hydrological applications with a

particular focus on canopy interception, Hydrol.

Earth Syst. Sci., 14, 383-392.

Blyth, E., and Harding, R. J. 2011. Methods to separate

observed global evapotranspiration into the

interception, transpiration and soil surface

Dolman, A. J., and De Jeu, R. A. M. 2010. Evaporation in

focus, Nat. Geosci., 3, 296

Ehleringer, J. R., and Dawson, T. E. 1992. Water uptake by

plants: perspectives from stable isotope

composition, Plant Cell Environ., 15, 1073-1082.

evaporation components, Hydrol. Process., 25,

-4068, doi: 10.1002/hyp.8409.

Blyth, E., Gash, J., Lloyd, A., Pryor, M., Weedon, G. P., and

Shuttleworth, J. 2010. Evaluating the JULES land

surface model energy fluxes using FLUXNET

data, J. Hydrometeorol., 11, 509-519,

doi:10.1175/2009JHM1183.1.

Brown, J., Simmonds, I., and Noone, D. 2006. Modeling ?18O

in tropical precipitation and the surface ocean

for present-day climate, J. Geophys. Res., 111,

D05105, doi:10.1029/2004JD005611.

Bruijnzeel, L. A. 1990. Hydrology of Moist Tropical Forests

and Effects of Conversion: A State of Knowledge

Review, International Hydrological Programme,

UNESCO.

Calder, I. R., Narayanswamy, M. N., Srinivasalu, N. V.,

Darling, W. G., and Lardner, A. J.: Investigation

into the use of deuterium as a tracer for

measuring transpiration from eucalypts, J.

Hydrol., 84, 345-351, 1986.

Calder, I. R., Kariyappa, G. S., Srinivasalu, N. V., and Murty,

K. V. S. 1992. Deuterium tracing for the

estimation of transpiration from trees Part 1.

Field calibration, J. Hydrol., 130, 17-25.

Cavanaugh, M. L., Kurc, S. A., and Scott, R. L. 2011.

Evapotranspiration partitioning in semiarid

shrubland ecosystem: a two-site evaluation of

soil moisture control on transpiration,

Ecohydrol., 4, 671-681, doi:10.1002/eco.157.

Choudhury, B., and DiGirolamo, N. 1998. A biophysical

process-based estimate of global land surface

evaporation using satellite and ancillary data-I.

Model description and comparison with

observations, J. Hydrol., 205, 164-185.

Clark, I., and Fritz, P. 1997. Environmental isotopes in

hydrogeology, CRC Press.

Coenders-Gerrits, A. M. J., van der Ent, R. J., Bogaard, T. A.,

Wang-Erlandsson, L., Hrachowitz, M., Savenije,

H. H. G. 2014. Uncertainties in transpiration

estimates, Brief Communications Arising,

Nature, 506, E1-E2, doi:10.1038/nature12925.

Covey, C., AchutaRao, K.M., Cubasch, U., Jones, P., Lambert,

S.J., Mann, M.E., Philips, T.J., and Taylor, K.E.

An overview of results from Coupled

Model Intercomparison Project. Glob. Plan.

Chang., 37, 103133.

Craig, H., and Gordon, L. I. 1965. Deuterium and oxygen-18

variations in the ocean and the marine

atmosphere, in: Proceedings of the conference

on stable isotopes in oceanographic studies and

paleotemperatures, edited by: Tongiorgi E.,

Laboratory of Geology and Nuclear Science,

Pisa, 9130.

Dirmeyer, P. A., Gao, X., Zha, M., Guo, Z., Oki, T., and

Hanasaki, N. 2006. GSWP-2: Multimodel

analysis and implications for our perception of

the land surface, B. Am. Meteorol. Soc., 87,

-1397.

Dixon, H.H. 1937. The convection of heat and materials in

the stem of a tree, vol. 4, Notes Botanical

School, Trinity College, Dublin, pp. 269278.

Farquhar, G. D., and Cernusak, L. A. 2005. On the isotopic

composition of leaf water in the non-steady

state, Funct. Plant Biol., 32, 293-303.

Ferretti, D. F., Pendall, E., Morgan, J. A., Nelson, J. A.,

LeCain, D., and Mosier, A. R. 2003. Partitioning

evapotranspiration fluxes from a Colorado

grassland using stable isotopes: Seasonal

variations and ecosystem implications of

elevated atmospheric CO2

, Plant Soil, 254, 291

Flanagan, L. B., and Ehleringer, J. R. 1991. Stable isotope

composition of stem and leaf water:

applications to the study of plant water use,

Funct. Ecol., 5, 270277.

Frankenberg, C., Yoshimura, K., Warneke, T., Aben, I., Butz,

A., Deutscher, N., Griffith, D., Hase, F., Notholt,

J., Schneider, M., Schrijver, H., and Rckmann,

T. 2009. Dynamic processes governing the

isotopic composition of water vapor as

observed from space and ground, Science, 325,

-1377, doi:10.1126/science.1173791.

Granier, A. 1985. Une nouvelle method pour la mesure du

flux de sve brute dans le tronc des arbres, Ann.

Sci. Forest, 42, 193-200.

Herbst, M., Kappen, L., Thamm, F., and Vanselow, R. 1996.

Simultaneous measurements of transpiration,

soil evaporation and total evaporation in a

maize field in northern Germany, J. Exp. Bot.,

, 1957-1962.

Huber, B. 1932. eo ac tung und e ung p lan lic er

Huber, B., and Schmidt, B. 1937. Eine

kompensationmet ode ur t er oele tri c en

e ung lang a er a t tr e, er. Deutsche

Bot. Ges., 55, 514529.

Hoffmann, G., Werner, M., and Heimann, M. 1998. Water

isotope module of the ECHAM atmospheric

general circulation model: A study on timescales

from days to several years, J. Geophys. Res.,

, D14.

Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y., and

Fawcett, P. J. 2013. Terrestrial water fluxes

dominated by transpiration, Nature, 496, 347-

, doi: 10.1038/nature11983

Keeling, C. D. 1961. The concentration and isotopic

abundance of atmospheric carbon dioxide in

rural and marine areas, Geochim. Cosmochim.

Acta, 24, 277-298.

Kendall, C., and McDonnell, J. J. 1998. Isotope tracers in

catchment hydrology, Elsevier, Amsterdam.

Kumagai, T., Saitoh, T. M., Sato, Y., Takahashi, H., Manfroi,

O. J., Morooka, T., Kuraji, K., Suzuki, M.,

Yasunari, T., and Komatsu, H. 2004. Annual

water balance and seasonality of

evapotranspiration in a Bornean tropical

rainforest, Agri. Forest Met., 128, 81-92,

doi:10.1016/j.agrformet.2004.08.006.

Lai, C.-T., Ehleringer, J. R., Bond, B. J., and Paw, U. K. T.

Contributions of evaporation, isotopic

non-steady state transpiration and atmospheric

ixing on t e ?18O of water vapor in Pacific

Northwest coniferous forests, Plant Cell

Environ., 29, 77-94.

Lawrence, D. M., Thornton, P. E., Oleson, K. W., and Bonan,

G. B. 2007. The partitioning of

evapotranspiration into transpiration, soil

evaporation, and canopy interception in a GCM:

Impacts on land-atmosphere interaction, J.

Hydrometeorol., 8, 862-880, doi:

1175/JHM596.1.

Lee, D., Kim, J., and Kim, S. 2010. Partitioning of catchment

water budget and its implications for ecosystem

carbon exchange, Biogeosciences, 7, 1903-1914.

Lee, D., and Veizer, J. 2003. Water and carbon cycle in the

Mississippi River basin: Potential implications

for the Northern Hemisphere residual

terrestrial, Glob. Biogeochem. Cy., 17, 1037,

doi:10.1029/2002GB001984.

Miralles, D.G., De Jeu, R.A.M., Gash, J.H., Holmes, T.R.H.,

and Dolman, A.J. 2011. Magnitude and

variability of land evaporation and its

components at the global scale, Hydrol. Earth

Syst. Sci., 15, 967-981, doi:10.5194/hess-15-

-2011.

Mitchell, P. J., Veneklaas, E., Lambers, H., and Burgess, S. S.

O. 2009. Partitioning of evapotranspiration in a

semi-arid eucalypt woodland in south-western

Australia, Agr. Forest Meteorol., 149, 25-37.

Mook, W.G. 2000. Environmental Isotopes in the

Hydrological Cycle-Principles and Applications,

UNESCO-IHP, Paris.

Noone, D., and Simmonds, I. 2002. Associations between

?

O of water and climate parameters in a

simulation of atmospheric circulation for 1979-

, J. Clim., 15, 3150-3169.

Oki, T., and Kanae, S. 2006. Global hydrological cycles and

world water resources, Science, 313, 1068-1072.

Risi, C., Noone, D., Worden, J., Frankenberg, C., Stiller, G.,

Kiefer, M., Funke, B., Walker, K., Bernath, P.,

Schneider, M., Wunch, D., Sherlock, V.,

Deuscher, N., Griffith, D., Wennberg, P. O.,

Strong, K., Smale, D., Mahieu, E., Barthlott, S.,

Hase, F., Garca, O., Notholt, J., Warneke, T.,

Toon, G., Sayres, D., Bony, S., Lee, J., Brown, D.,

Uemura, R., and Sturm, C. 2012.

Processevaluation

of tropospheric humidity simulated

by general circulation models using water vapor

isotoplogues: 1. Comparison between models

and observations, J. Geophys. Res., Vol. 117,

D05303, doi:10.1029/2011JD016621.

Robertson, J. A., and Gazis, C. A. 2006. An oxygen isotope

study of seasonal trends in soil water fluxes at

two sites along a climate gradient in

Washington state (USA), J. Hydrol., 328, 375

Rckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen,

M. and Coauthors. 1996. The atmospheric

general circulation model ECHAM-4: Model

description and simulation of present-day

climate. Max Planck Institute for Meteorology

Rep. 218, MPI, Germany.

Roupsard, O., Bonnefond, J-M., Irvine, M., Berbigier, P.,

Nouvellon, Y., Dauzat, J., Taga, S., Hamel, O.,

Jourdan, C., Saint-Andr, L., Mialet-Serra, I.,

Labouisse, J-P., Epron, D., Joffre, R., Braconnier,

S., Rouzire, A., Navarro, M., and Boullet, J-P.

Partitioning energy and evapotranspiration

above and below a tropical palm

canopy, Agr. Forest Meteorol., 139, 252-268.

Schlesinger, W. H., and Jasechko, S. 2014. Transpiration in

the global water cycle, Agr. Forest Meteorol.,

-190, 115-117,

doi:10.1016/j.agrformet.2014.01.011.

Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger,

E. B., Lehner, I., Orlowsky, B., and Teuling, A. J.

Investigating soil moisture-climate

interactions in a changing climate: A review,

Earth-Sci. Rev., 99, 125-161,

doi:10.1016/j.earscirev.2010.02.004.

Steppe, K., de Pauw, D. J. W., Doody, T. M., Teskey, R. O.

A comparison of sap flux density using

thermal dissipation, heat pulse velocity and

heat field deformation methods, Agr. Forest

Meteorol., 150, 1046-1056,

doi:10.1016/j.agrformet.2010.04.004.

Sutanto, S. J., Wenninger, J., Coenders-Gerrits, A. M. J., and

Uhlenbrook, S. 2012. Partitioning of

evaporation into transpiration, soil evaporation

and interception: a comparison between

isotope measurements and a HYDRUS-1D

model, Hydrol. Earth Syst. Sci., 16, 2605-2616,

doi:10.5194/hess-16-2605-2012

Sutanto, S. J., Hoffman, G., Scheepmaker, R. A., Worden, J.,

Houweling, S., Yoshimura, K., Aben, I., and

Rckmann, T. 2015. Global-scale remote sensing

of water isotopologues in the troposphere:

representation of first-order isotope effects,

Atmos. Meas. Tech., 8, 999-1019,

doi:10.5194/amt-8-999-2015.

Sutanto, S. J., van den Hurk, B., Dirmeyer, P. A.,

Seneviratne, S. I., Rckmann, T., Trenberth, K.

E., Blyth, E. M., Wenninger, J., and Hoffmann, G.

HESS Opinion A per pective on i otope

versus non-isotope approaches to determine

the contribution of transpiration to total

evaporation, Hydrol. Earth Syst. Sci., 18, 2815-

, doi:10.5194/hessd-18-2815-2014.

Trenberth, K., Fasullo, J., and Kiehl, J. 2009. Eart glo al

energy budget, Bull. Amer. Meteor. Soc., 90,

323.

von Storch, H., Langenberg, H., and Feser, F. 2000. A

spectral nudging technique for dynamical

downscaling purpose. Month. Weather Rev.,

, 36643673.

Williams, D. G., Cable, W., Hultine, K., Hoedjes, J. C. B.,

Yepez, E. A., Simonneaux, V., Er-Raki, S., Boulet,

G., de Bruin, H. A. R., Chehbouni, A.,

Hartogensis, O. K., and Timouk, F. 2004.

Evapotranspiration components determined by

stable isotope, sap flow and eddy covariance

techniques, Agr. Forest Meteorol., 125, 241-258.

Williamson, D. L., and Rasch, P. J. 1994. Water vapor

transport in the NCAR CCM2. Tellus 46A, 3451.

Wenninger, J., Beza, D. T., and Uhlenbrook, S. 2010.

Experimental investigations of water fluxes

within the soil-vegetation-atmosphere system:

stable isotope mass-balance approach to

partition evaporation and transpiration, Phys.

Chem. Earth, 35, 565-570,

doi:10.1016/j.pce.2010.07.016.

Xu, Z., Yang, H., Liu, F., An, S., Cui, J., Wang, Z.

and Liu, S.

Partitioning evapotranspiration flux

components in a subalpine shrubland based on

stable isotopic measurements, Bot. Stud., 49,

-361.

Yakir, D., and da Sternberg, L. S. 2000. The use of stable

isotopes to study ecosystem gas exchange,

Oecologia, 123, 297311.

Yepez, E.A., Williams, D.G., Scott, R.L., and Lin, G. 2003.

Partitioning overstory and understory

evapotranspiration in a semiarid savanna

woodland from the isotopic composition of

water vapor, Agr. Forest Meteorol., 119, 53-68.

Yoshimura, K., Kanamitsu, M., Noone, D., and Oki, T. 2008.

Historical isotope simulation using Reanalysis

atmospheric data, J. Geophys. Res., 113,

D19108, doi:10.1029/2008JD010074.

Yoshimura, K., Frankenberg, C., Lee, J., Kanamitsu, M.,

Worden, J., and Rckmann, T. 2011.

Comparison of an isotopic atmospheric general

circulation model with new quasi-global satellite

measurements of water vapor isotopologues, J.

Geophys. Res., 116, D19118,

doi:10.1029/2011JD016035.

Zhang, S., Wen, X., Wang, J., Yu, G., and Sun, X. 2010. The

use of stable isotopes to partition

evapotranspiration fluxes into evaporation and

transpiration, Acta Ecol. Sin., 30, 201209,

doi:10.1016/j.chnaes.2010.06.003.

Zhang, Y., Shen, Y., Sun, H., and Gates, J. B. 2011.

Evapotranspiration and its partitioning in an

irrigated winter wheat field: A combined

isotopic and micrometeorologic approach, J.

Hydrol., 408, 203 211.




DOI: https://doi.org/10.32679/jth.v6i2.520

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 JURNAL TEKNIK HIDRAULIK

Indexed by:
   
     
 
 
 
Sekretariat:
 
Direktorat Bina Teknik Sumber Daya Air, Direktorat Jenderal Sumber Daya Air, Kementerian Pekerjaan Umum dan Perumahan Rakyat
 
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.