Samuel Jonson Sutanto, Banata Wachid Ridwan


Fast, reliable, and accurate topography measurement is needed for a study and evaluation of P3SON Hambalang area. Experimental Station for Sabo, therefore, was given a mandate to perform the topography measurement. Measurement has been carried out using fotogrammetry technique of remote sensing photos captured by drone. The results of drone measurement are Digital Surface Model (DSM), Digital Terain Model (DTM), and the final result is a contour map, which have high resolution data of 5 cm. The whole processes starting from field measurement until final results are obtained require around 4 to 5 working days, without any significant obstacles during both measurement and analysis. Due to the high-resolution result, fast, and cheap, it is foreseen that fotogrammetry technique using drone will be used more often in the future for topography measurement. However, drone topography measurements experience a difficulty in the non-vulkanic rivers (river with water table). The riverbed cannot be well measured by drone, especially for the rivers with high sediment concentration such in general rivers in Indonesia.


Topography measurement; fast; high resolution; photogrammetry; drone

Full Text:



Colomina I., dan Molina P. 2014. Unmanned aerial system for photogrammetry and remote sensing: a review, ISPRS journal of photogrammetry and remote sensing, 92, 79-97, doi:10.1016/j.isprsjprs.2014.02.013.

Diaz-Varela R. A., Zarco-Tejada P. J., Angileri V., dan Loudjani P. 2014. Automatic identification of agricultural terraces through object-oriented analysis of very high resolution DSMs and multispectral imagery obtained from an unmanned aerial vehicle, Journal of environmental management, 134, 117-126, doi:10.1016/jenvman.2014.01.006.

Everaerts J. 2008. The use of unmanned aerial vehicles (UAVS) for remote sensing and mapping, The international archives of the photogrammetry, Remote sensing and spatial information sciences, Vol XXXVII, part B1, Beijing.

Getzin S., Wiegand K., dan Schning I. 2012. Assesing biodiversity in forests using very high-resolution images and unmanned aerial vehicles, Methods in ecology and evolution, 3, 397-4040, doi:10.1111/j.2041-210X.2011.00158.x.

Hodgson A., Kelly N., dan Peel D. 2013. Unmanned aerial vehicles (UAVs) for surveying marine fauna: a Dugong case study, PLoS ONE, 8(11), e79556, doi:10.1371/journal.pone.0079556.

Jones IV G. P., Pearlstine L. G., dan Percival H. F. 2006. An assessment of small unmanned aerial vehicles for wildlife research, Wildlife society bulletin, 34(3), 750-758, doi:10.2193/0091-7648(2006)34[750:AAOSUA]2.0.CO;2.

Klemas V. V. 2015. Coastal and environmental remote sensing from unmanned aerial vehicles: an overview, Journal of coastal research, 31(5), 1260-1267, doi:10.2112/JCOASTRES-D-15-00005.1.

Koh L. P., dan Wich S. A. 2012. Dawn of drone ecology: low-cost autonomous aerial vehicles for conservation, Tropical conservation science, Vol 5(2), 121-132, ISSN 1940-0829.

Lejot J., Delacourt C., Pigay H., Fournier T., Trmlo M-L., dan Allemand P. 2007. Very high spatial resolution imagery for channel bathymetry and topography from an unmanned mapping controlled platform, Earth surf. Process. Landforms, 32, 1705-1725, doi:10.1002/esp.1595.

Oudraogo M. M., Degr A., Debouche C., dan Lisein J. 2014. The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds, geomorphology, 214, 339-355, doi:10.1016/j.geomorph.2014.02.016.

dOleire-Oltmanns S., Marzolff I., Peter K. D., dan Ries J. B. 2012. Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco, Remote sens., 4, 3390-3416, doi:10.3390/rs4113390.

Rock G., Ries J. B., dan Udelhoven T. 2011. Sensitivity analysis of UAV-photogrammetry for creating digital elevation model (DEM), International archives of the photogrammetry, Remote sensing and spatial information sciences, Vol XXXVIII-1/C22UAV-g2011, Conference on unmmaned aerial vehicle in geomatics, Zurich, Switzerland.

Rossi G., Nocentini M., Lombardi L., Vannocci P., Tanteri L., Dotta G., Bicocchi G., Scaduto G., Salvatici T., Tofani, V., Moretti S., dan Casagli N. 2016. Integration of multicopter drone measurements and ground-based data for landslide monitoring, Landslide and engineered slopes. Experience, theory and practice, Rome, Italy, ISBN 978-1-138-02988-0.

Sze L. T., Cheaw W. G., Ahmad Z. A., Ling C. A., Chet K. V., Lateh H., dan Bayuaji L. 2015. High resolution DEM generation using small drone for interferometry SAR, International conference on space science and communication, doi:10.1109/IconSpace.2015.7283801.

Turner D., Lucieer A., dan de Jong S. M. 2015. Time series analysis of landslide dynamics using an unmmaned aerial vehicle (UAV), Remote sens., 7, 1736-1757, doi:10.3390/rs70201736.

Uysal M., Toprak A. S., dan Polat N. 2015. DEM generation with UAV photogrammetry and accuracy analysis in Sahitler hill, Measurement, 73, 539-543, doi:10.1016/j.measurement.2015.06.010.

DOI: https://doi.org/10.32679/jth.v7i2.567


  • There are currently no refbacks.

Copyright (c) 2018 Bintek SDA

Indexed by:
Direktorat Bina Teknik Sumber Daya Air, Direktorat Jenderal Sumber Daya Air, Kementerian Pekerjaan Umum dan Perumahan Rakyat
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.